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RATIO, D U C E D  LIFT-CRUISE FAN 

By Demo J .  Giu l iane t t i ,  James C .  Biggers, 
and Victor R .  Corsiglia 

Ames Research Center 
Moffett Field,  Ca l i f .  

SUMMARY 

A f ixed blade angle, ducted, t ip-turbine-driven fan  w a s  investigated as a 
propulsive cruise  device. Results a re  presented f o r  cruise  conditions and 
t r a n s i t i o n  conditions t o  high duct angles.  Thrust and longi tudinal  aero- 
dynamic charac te r i s t ics  a re  shown f o r  various duct e x i t  areas  a t  duct angles 
ranging from -4O t o  t80° and f o r  forward speeds ranging from 0 t o  about 180 
knots.  Duct i n l e t  s t a l l  boundaries and representative duct i n l e t  pressure 
d is t r ibu t ions  are  included . 

Increases in  l i f t  and posi t ive pitching moment accompanied increases i n  
duct angle.  Losses i n  l i f t  and th rus t  and reductions of posi t ive pitching 
moments accompanied duct i n l e t  s t a l l .  In l e t  flow separation a t  duct s ta l l  
was r e s t r i c t e d  t o  the  lower portions of the  i n l e t .  Maximum descent veloci-  
t i e s ,  as l imited by duct i n l e t  s t a l l  f o r  an airplane assumed t o  have two 
ducted l i f t - c r u i s e  fans ,  varied from approximately 1160 t o  about 2150 ft/min 
f o r  various conditions of forward speed, duct angle, and wing loading. Duct 
e x i t  area var ia t ion  w a s  e f fec t ive  f o r  maintaining high l eve l s  of net  t h rus t  
with changes i n  forward speed. 

INTRODUCTION 

There has been a continually increasing in t e re s t  i n  t he  use of ducted 
cruise  fans  as propulsive devices f o r  a i r c r a f t  i n  the  high subsonic speed 
range of 0.6 t o  0.8 Mach number. 
t h rus t  f o r  V/STOL while s t i l l  maintaining high subsonic cruise  capabi l i ty  led 
t o  t he  design of t he  t ip-turbine-driven cruise  f an .  Conversion of t he  high 
disk loading of a turboje t  gas generator t o  the  lower disk loading of the  fan 
r e s u l t s  i n  increases i n  s t a t i c  t h r u s t  f o r  the  same power input .  Previous 
t e s t s  using the  t ip-turbine-driven fan  of t h i s  invest igat ion have shown a 
s t a t i c  t h rus t  augmentation of 2.8 over t h a t  of t he  p la in  turboje t  used as the  
gas generator ( r e f .  1). Subsequent t e s t s  ( r e f s .  2 through 3 )  indicated the 
f e a s i b i l i t y  of these fan  u n i t s  as d i r ec t  l i f t i n g  devices i n  wings and fuse-  
lages of V/STOL a i r c r a f t .  
turbine-driven f a n  incorporated in to  a ducted cruise  f an  design. Duct e x i t  
area was varied i n  the  absence of var iable  blade angle capabi l i ty  i n  an 
at%empt t o  maintain design pressure r a t i o  across the  fan  with changes in 

The des i r ab i l i t y  of obtaining large s t a t i c  

The present invest igat ion w a s  made using a t i p -  
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forward speed. The purposes of t h i s  invest igat ion were t o  study performance 
and aerodynamic cha rac t e r i s t i c s  of t h e  ducted cruise  fan as a propulsive 
device f o r  subsonic cruise  f l i g h t  and t o  determine i ts  s u i t a b i l i t y  f o r  V/STOL 
appl icat ion as a t i l t i n g  ducted fan during the  t r a n s i t i o n  from hover t o  
fosward f l igh t .  

Tests were conducted at zero and low forward speeds t o  about 180 knots 
and f o r  a duct angle range of -4' t o  40'. 
dynamic cha rac t e r i s t i c s  were measured. The e f f ec t  of duct i n l e t  s t a l l  on the  
model charac te r i s t ics ,  i n l e t  s ta l l  boundaries in descending f l igh t ,  and repre- 
sentat ive duct i n t e r n a l  pressure d is t r ibu t ions  upstream of the  fan f o r  
conditions preceding and following i n l e t  s ta l l  were determined. 

Three-component longi tudinal  aero- 

NOTATION 

duct e x i t  area,  sq f t  

reference duct e x i t  area,  19.57 sq f t  

Ae 

A, , 
C duct chord, 12.71 f t  

D 

- 

drag coef f ic ien t ,  - 
CD ss, 

CL 

c, 

l i f t  coef f ic ien t ,  ~ 4 ,  L 

M pitching-moment coef f ic ien t  , - 
S E q ,  

drag, l b  

f an  diameter, 5.21 f t  

l i f t  , lb 
pitching moment about model moment center , f t  -1b 

corrected fan ro t a t iona l  speed, rpm 

standard atmospheric pressure, 2116 lb/sq f t  

tes t - sec t ion  s t a t i c  pressure lb/sq f t  

t o t a l  pressure, lb/sq f t  or inches of water 

dynamic pressure, lb/sq f t  or  inches of water 

i n l e t  r a d i a l  distance from duct center l i n e  at rake s ta t ion ,  i n .  or f t  
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R maxi" i n l e t  radius at  rake s t a t ion  or radius  defining duct external  
contour, in. or f t  

S t o t a l  projected f r o n t a l  area,  39.30 sq f t  

s, 
T t h r u s t  along f an  ax i s ,  lb 

TS reference s t a t i c  t h r u s t  at  100-percent fan  speed, 7500 lb 

v veloci ty ,  f t / s ec  or knots 

reference wing area  used f o r  performance calculat ions,  300 sq f t  

W - 
SW 

fan  t i p  speed, - mf , f t / s ec  60 

wing loading, *Os' , l b / f t 2  
300 

x ,y duct a x i a l  and r a d i a l  coordinates, respectively,  i n .  

a duct angle, angle of t h r u s t  axis t o  f r e e  stream, deg 

P circumferential  posi t ion f r o m  top  of duct,  deg 

PS 
P O  

6 r e l a t ive  s t a t i c  pressure,  - 

e r e l a t ive  temperature r a t i o ,  ambient temperature ( absolute)/460° 

P fan  t i p  speed r a t i o ,  

APloss l o s s  i n  t o t a l  pressure 

Subscript s 

2 l o c a l  

i i n l e t  

f r e e  stream 

fl externa l  duct 
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MODEL DESCRIPTION 

Photographs of t he  model i n s t a l l ed  i n  t h e  t es t  sect ion of t h e  Ames 
Model dimensions and 40- by 80-foot wind tunnel  are shown i n  f igure  1. 

geometry are given i n  figure 2. 

Model Ins t a l l a t ion  

?"ne model w a s  supported by horizontal  tubes extending from the  duct t o  
the  s t r u t s  on each side of t he  model. A t h i r d  support w a s  a pitch-drive mech- 
anism t h a t  held the  model i n  posi t ion and w a s  used t o  change duct angle. The 
pitch-drive mechanism was secured t o  t he  t o p  of t he  r igh t  (s tarboard)  s t ru t  
and consisted of a screw driven by an e l e c t r i c  motor through a speed reducer. 
The e n t i r e  model support system, including the  pitch-drive mechanism, w a s  
shielded from the  free-stream air  by sheet metal f a i r i n g s  which were 
independent of t he  model and the  wind-tunnel force measuring system. 

Duct and Centerbodies 

Coordinates defining the  duct i n t e rna l  and ex terna l  contours a re  given 
i n  t ab le  I. External duct contour coordinates are  l i s t e d  f o r  circumferential  
posi t ions around the  duct and define t h e  duct shape up t o  the  f ron t  face of 
t h e  fan frame ( s t a t i o n  68, f i g .  2 ) .  
t o  favor l o w  forward speed conditions. External duct contours f romthe  f ront  
face of t he  fan frame t o  the  duct t r a i l i n g  edge a re  defined by r a d i i  l i s t e d  
i n  t ab le  I. Centerbody geometry i s  defined by coordinates l i s t e d  i n  t ab le  11. 
Coordinates a re  given f o r  t he  i n l e t  centerbody upstream of the  fan  and f o r  
three interchangeable d i f fuser  centerbodies downstream of the  fan .  An a l t e r -  
nate duct t r a i l i n g  edge extended the  duct 8 inches and resul ted i n  a smaller 
duct e x i t  diameter ( f i g .  2 ) .  The three  d i f fuser  centerbodies in  combination 
with the two duct e x i t  configurations allowed t e s t i n g  of six e x i t  areas .  The 
la rges t  e x i t  a rea  (a rea  r a t i o  of 1.0) w a s  intended t o  produce the  design 
pressure r a t i o  across the  f ixed blade angle fan a t  zero and low forward 
speeds. 
a design cruise  speed of 0.6 Mach number a t  100-percent fan speed. 
configurations were t e s t ed  t o  evaluate e f f e c t s  a t  off-design speed conditions. 

The duct i n l e t  l i p  w a s  r e l a t ive ly  th ick  

The configuration giving an e x i t  area r a t i o  of 0.62 w a s  intended f o r  
The other 

Fan and G a s  GeLerator 

The fan  w a s  a f u l l  scale ,  1.1 pressure r a t i o ,  t ip-turbine-driven fan  
described i n  references 3 and 4. 
vanes mounted behind the  stators were removed. The fan  was driven by a turbo- 
j e t  engine enclosed i n  a nacelle mounted above t h e  duct.  The nacel le  leading 
edge extended forward of the  duct leading edge as shown i n  f igures  l ( a )  and 2. 

For t h i s  invest igat ion,  however, t he  e x i t  
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The engine exhaust gases dr iving the  fan were exhausted in to  the  duct 
downstream of the  fan  through a shallow annulus sect ion encompassing 173' of 
azimuth as shown in f igure  2. 

Pressure Rakes 

In te rna l  flow cha rac t e r i s t i c s  i n  the  i n l e t  upstream of t h e  fan were 
measured by pressure rakes located as shown in f igure  2. Boundary-layer rakes 
were mounted on the  duct inner w a l l s  and on the  i n l e t  centerbody a t  the  same 
axial s ta t ion .  
contained f i v e  t o t a l  and one s t a t i c  pressure tube.  Special  t e s t s  were made 
t o  measure duct ex terna l  drag. For these tests,  ex terna l  boundary-layer 
rakes were mounted at  eight  azimuth posi t ions 1/4-inch upstream of the  duct 
t r a i l i n g  edge. 

Each of t he  boundary-layer rakes w a s  1-1/4 inches high and 

TESTING AND PROCEDURF: 

Three-component force and moment data  were obtained through a duct angle 
range of -4' t o  +80° and a t  forward speeds f r o m  0 t o  about 180 knots.  
forward speed conditions were simulated by reducing fan speed and operating 
at the  same r a t i o  of f an - t ip  speed t o  free-stream veloci ty  as would be 
obtained a t  forward speeds greater  than 180 knots and a t  maxi" fan  speed. 
Fan speed w a s  varied from about 1200 t o  about 2400 rpm and w a s  used f o r  
t h rus t  cont ro l .  The method of t e s t i n g  w a s  t o  vary f an  speed independently 
by varying gas generator (engine) speed and forward speed while maintaining a 
f ixed duct angle.  The procedure t o  define duct i n l e t  s t a l l  w a s  t o  operate a t  
l o w  t i p  speed r a t i o  (high fan  speed) and successively increase t i p  speed 
r a t i o  (decrease fan  speed) while maintaining a f ixed duct angle and forward 
speed u n t i l  t he  i n l e t  s t a l l e d .  With the duct i n l e t  s t a l l ed ,  t i p  speed r a t i o  
w a s  then decreased by increasing fan  speed a t  the  same duct angle and forward 
speed u n t i l  t he  i n l e t  f l o w  reat tached.  For those t e s t s  where ex terna l  
boundary-layer rakes were in s t a l l ed  t o  measure duct ex terna l  drag, no force 
or moment data  were recorded. 

Higher 

CORRECTIONS 

No correct ions were applied t o  t h e  force da ta  t o  compensate f o r  wind- 
tunnel  w a l l  in terference e f f ec t s  with the  fan operating as the  magnitude of 
such corrections w a s  not known. Contributions t o  l i f t ,  drag, and pitching 
moment due t o  air f l o w h g  through the  gas generator a re  included i n  the  da t a .  
It should be noted t h a t  a l l  gas generator inputs t o  the  data  a re  inherent t o  
t h e  par t icu lar  system and t h a t  placing t h e  gas generator i n  a remote locat ion 
would change t h e  l i f t  and moment. The data  contain a l l  fan forces  as wel l  as 
aerodynamic forces  and include s t r u t  interference e f f e c t s  which w i l l  be 
discussed l a t e r .  A l l  model supports were completely f a i r e d  and the  f a i r i n g s  
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were independent of t h e  model and the  wind-tunnel force measuring system; 
hence, no t a r e s  f o r  these were applied t o  the  da ta .  

RESULTS 

S ta t i c  Thrust 

S t a t i c  t h r u s t  as a function of fan  speed is  shown in  f igure  3 .for a duct 
e x i t  a rea  r a t i o  of 1 .0 .  

Aerodynamic Character ist  i c  s 

Longitudinal aerodynamic cha rac t e r i s t i c s  f o r  t h e  configurations t e s t ed  a re  
presented i n  f igu res  4 through 14. 
shown i n  coef f ic ien t  f o r m  and, with the  exception of f igures  9 and 11, are  
presented as functions of t i p  speed r a t i o  and show t h e  e f f e c t s  of forward 
speed on the  model cha rac t e r i s t i c s .  Figure 10 shows the  e f f ec t  of duct i n l e t  
s ta l l  on the  model cha rac t e r i s t i c s  a t  duct angles of 50°, 60°, and 70' f o r  a 
duct e x i t  a rea  r a t i o  of 0.93. 
summarized i n  f igure  12 f o r  ranges of duct angles and f an  speeds a t  several  
forward speeds. Pitching-moment cha rac t e r i s t i c s  as a function of duct angle 
a re  summarized i n  f igu res  13 and 14 f o r  several  fan  and forward speeds. 

The r e s u l t s  of f igures  4 through 11 are 

Lift-drag cha rac t e r i s t i c s  of t he  model a re  

Duct k l e t  Pressure Distr ibut ions 

Repre sentat  ive duct i n l e t  pressures a re  presented i n  f igures  15 through 
Figure 15 shows the  t o t a l  pressure l o s s  in t h e  i n l e t  at  0' duct angle 17. 

both s t a t i c a l l y  and at forward speed. Figures 16 and 17 present i n l e t  r a d i a l  
t o t a l  pressure d i s t r ibu t ions  at  several  forward speeds f o r  conditions short ly  
before and d t e r  duct i n l e t  s t a l l .  

Performance 

The e f f e c t s  of duct e x i t  area and duct ex terna l  drag on the  var ia t ion  of 

Figure 20 presents perform- 
net  t h rus t  with forward speed are  presented i n  f igu res  18 and 19 ( the  net  
t h rus t  includes the  ex terna l  drag of t he  d u c t ) .  
ance estimates i n  descending f l i g h t  f o r  a hypothetical  airplane (assumed t o  
have two ducted l i f t - c r u i s e  fans  as propulsive devices) and shows how the  
maximum descent r a t e s  as a function of forward speed a re  l imited by duct i n l e t  
s ta l l  f o r  th ree  wing loadings. 
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DISCUSSION 

S ta t i c  Thrust 

The r e s u l t s  of t h e  s t a t i c  t h r u s t  measurements shown i n  f igure  3 indicate 
t h a t  by extrapolat ion of t he  data  t o  100-percent fan  speed with the  maximum 
duct e x i t  area, a value of 7500 pounds of s t a t i c  thrust should be obtained. 
With a duct e x i t  area r a t i o  of 80 percent of the  maximum, t he  s t a t i c  t h rus t  
w a s  reduced by about 18 percent.  Further reductions i n  duct e x i t  area caused 
engine turbine exhaust temperatures t o  be higher than permissible f o r  opera- 
t i o n  at  the  s t a t i c  conditions; hence, no fur ther  s t a t i c  da ta  could be obtained 
a t  lower duct e x i t  areas. The i n l e t  t o t a l  pressure loss measurements shown i n  
f igure  15 indicate  t h a t  a loss greater  than 7 percent occurred at s t a t i c  con- 
d i t i ons  probably as a r e s u l t  of t he  cambered i n l e t  shape. With very s m a l l  
increases i n  forward speed, t h e  t o t a l  pressure loss w a s  reduced t o  less than 
5 percent , and a t  free-stream dynamic pressures greater  than 0.7 of the  i n l e t  
dynamic pressure, t he  t o t a l  pressure loss i n  the  i n l e t  w a s  constant, about 
3.5 percent.  The measurements of i n l e t  pressure d i s t r ibu t ion  showed t h a t  the  
stagnation pressure on t h e  cambered i n l e t  leading edge moved with forward 
speed i n  a manner consis tent  with the  var ia t ion  of i n l e t  t o t a l  pressure loss 
shown i n  f igure  15. 

Aerodynamic Character is t ics  

L i f t  . -  The var ia t ion  of l i f t  coef f ic ien t  with forward speed at 0' duct 
angle w a s  generally s m a l l  ( f i g s .  4 through 8 ) .  L i f t  developed with increas- 
ing duct angle.  Figure 11 shows t h a t  l i f t  w a s  due both t o  the  free-stream 
flow over the  duct and t o  loads induced by fan speed. L i f t  contributions at  
duct angles greater  than 0' were a l so  due t o  the  component of t h rus t  i n  t he  
l i f t  d i rec t ion  which increased with increasing duct angle . 

Pitching moment .- Increases i n  posi t ive pitching moment accompanied 
increases i n  duct angle.  The r e s u l t s  of f igure  11 show t h a t  an unstable 
pitching-moment slope w a s  cha rac t e r i s t i c  of the  duct i t s e l f  i n  t he  absence of 
engine power e f f e c t s .  The pitching moment maintains an unstable slope t o  high 
l i f t  coef f ic ien ts  and becomes large with increasing fan  speed at  high duct 
angles.  It should be noted, however, t h a t  the  large posi t ive pitching moments 
a re  p a r t i a l l y  the  r e s u l t  of t he  choice of moment center at  t h e  duct pivot on 
the  fan  axis at  45.8 percent of t he  duct chord. 
25-percent duct chord would reduce the  moment arm and cause lower posi t ive 
pitching moments. This i s  i l l u s t r a t e d  i n  f igure  14 f o r  t he  pitching-moment 
var ia t ions  shown i n  f igure  13 at  80 and 121 knots forward speed and at 2200 
rpm fan  speed. 

Placing the  moment center at 

Duct i n l e t  s ta l l . -  The duct i n l e t  did not s ta l l  a t  duct angles of 40° and 
l e s s .  The r e s u l t s  - in  f igure  10 show losses  i n  l i f t  and t h r u s t  and reductions 
of posi t ive pitching moments with duct i n l e t  s t a l l .  A hys t e re s i s - s t a l l  loop 
resu l ted  when fan  speed w a s  decreased u n t i l  the  inlet s t a l l e d  and then 



increased u n t i l  t he  i n l e t  flow reattached ( f i g .  10). 
speed at constant t h r o t t l e  .sett ing accompanied i n l e t  s ta l l .  

A s m a l l  increase i n  fan  

Radial total-pressure d is t r ibu t ions  upstream of t he  fan showed t h a t  a t  
a l l  of t h e  duct angles at which the  i n l e t  s t a l l ed ,  flow separation w a s  
r e s t r i c t e d  to t he  lower portion of t he  i n l e t  and was evident across the  e n t i r e  
i n l e t  radius  ( f i g s .  16 and 17) . 

Performance 

The da ta  of f i gu res  4 through 8 indicated t h a t  t i p  speed r a t i o  appeared 
t o  be a good cor re la t ing  independent parameter t h a t  would allow extrapolation 
of t e s t  data  t o  higher f an  and forward speeds. The curves presented i n  f i g -  
ures  18 and 19 scale t e s t  data  obtained at lower fan and forward speeds t o  
higher forward speeds on the  bas i s  of t i p  speed r a t i o  f o r  100-percent fan  
speed (2640 rpm) . 
independent Mach number e f f e c t s  are  encountered. 

Such scaling of t e s t  da ta  should be e f fec t ive  u n t i l  

Duct e x i t  area var ia t ion .  - The highest  t h r u s t  w a s  obtained with a duct 
e x i t  area r a t i o  of 1 .O up t o  forward speeds of about 190 kno t s  ( f i g  . 18) . 
The highest  t h r u s t  at  forward speeds greater  than about 230 knots w a s  obtained 
with a duct e x i t  a rea  r a t i o  of 0.74. 
290 knots there  w a s  l i t t l e  difference i n  net  t h rus t  f o r  e x i t  area r a t i o s  of 
0.62 and 0.74. 
o r i t y  over t h e  s m a l l  forward speed range between about 190 kno t s  and 230 
knots .  Increases i n  duct e x i t  area greater  than an e x i t  area r a t i o  of 0.74 
caused progressively lower th rus t  values a t  higher forward speeds. A lower 
l i m i t  of duct e x i t  a rea  seemed t o  have been exceeded with an e x i t  a rea  r a t i o  
of 0.56 which generally produced a low l e v e l  of ne t  t h r u s t  over most of the  
speed range. 

A t  forward speeds greater  than about 

A duct e x i t  area r a t i o  of 0.80 showed a s l igh t  t h rus t  superi- 

Duct ex terna l  drag. - Integration of boundary-layer t o t a l  pressures a t  
t he  duct t r a i l i n g  edge, measured with the  power on, showed a high over-al l  
duct external  drag coef f ic ien t  of 0.11. Those rakes mounted on the  r e l a t ive ly  
clean bottom of t h e  duct indicated much lower l o c a l  values of duct external  
drag coef f ic ien t ,  approximately 0.04. 
duct external  drag coef f ic ien t  of about 0.11. If the  ex terna l  drag could be 
reduced t o  about 0.04,gains i n  net  t h rus t  could 'be achieved over t he  e n t i r e  
range of forward speeds. This i s  i l l u s t r a t e d  i n  f igure  19 f o r  two e x i t  area 
r a t i o s .  This f igure  shows t h a t  f o r  an e x i t  a rea  r a t i o  of 0.62, reducing the  
ex terna l  drag coef f ic ien t  from 0.11 t o  0.04 would a l l o w  the  max i "  forward 
speed f o r  zero net  thrust  t o  be increased from about 362 knots t o  about 430 
knots. The gains in'performance obtainable by reducing t h e  ex terna l  duct 
drag a re  greater  f o r  t he  smaller duct e x i t  a rea  required a t  cruise  speeds 
than f o r  t he  la rger  duct e x i t  area required f o r  zero and low forward speeds. 
The l i m i t  of such performance improvements i s  demonstrated by the  case of 
zero ex terna l  drag. 

The r e s u l t s  of f igure  18 are  f o r  a 
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Tuft observations and boundary-layer measurements indicated t h a t  t he  
high ex terna l  duct arag w a s  a t t r i bu tab le  in  pa r t  t o  large areas of rough and 
separated flow over the  duct surface downstream of the  s t r u t  mounts. This 
ex terna l  flow interference w a s  due t o  the  presence of t he  horizontal  f a i r i n g s  
and t o  the  proximity t o  the  duct w a l l  of t he  v e r t i c a l  s t ru t  f a i r ings .  
f ac to r  thought t o  adversely a f f ec t  t he  duct ex terna l  flow w a s  t he  severe duct 
surface contour changes downstream of t h e  fan on the  upper half  of the  duct.  
Increased thickness on t h i s  portion of t he  duct w a s  necessary t o  enclose t h e  
ducting system t h a t  delivered the  j e t  exhaust t o  the  t i p  turb ine .  This 
increased duct thickness resu l ted  i n  la rger  t ra i l ing-edge closure angles 
(angle between inner and outer duct surfaces) on the  upper half  of t he  duct .  

Another 

I n l e t  s t a l l  boundaries. - The performance estimates presented in  f igure  20 
are  f o r  a hypothetical  a i rplane assumed t o  have a wing aspect r a t i o  of 4.0, a 
wing area of 300 square f e e t ,  and two t i l t i n g  ducted l i f t - c r u i s e  fans  as pro- 
pulsive devices. 
putations correspond t o  thrust-to-weight r a t i o s  of 1.25, 1.00, and 0.83, 
respectively,  (based on 15,000 pounds of net  s t a t i c  t h rus t  avai lable  from the  
two ducted l i f t - c r u i s e  fans  at 100-percent fan  speed). 
wing CL and CD of 1.20 and 0.20, respectively,  were assumed f o r  the  airplane 
a t  a l l  forward speeds exclusive of any duct contributions.  The maximum 
descent r a t e s  possible f o r  t he  ai rplane as l imited by duct i n l e t  s t a l l  varied 
f rom approximately 1160 ft/min a t  80' duct angle and 40 lb/sq f t  wing loading 
t o  about 2150 ft/min a t  50' duct angle and 60 lb/sq f t  wing loading ( f i g .  20). 

Wing loadings of 40, 50, and 60 lb/sq f t  used f o r  these com- 

Constant values of 

Duct i n l e t  s t a l l  depends upon the  duct angle and fan speed o r  power 
required at  any forward speed; however, t h e  ai rplane maximum descent perform- 
ance a l s o  depends upon the  portion of t he  load car r ied  by t h e  wing. A reduc- 
t i o n  of t he  wing l i f t  coeff ic ient  f r o m  the  values of 1.20 assumed f o r  t he  
descent calculat ions has the  immediate e f f ec t  of increased fan  speed or power 
required t o  carry the  addi t ional  load and r e s u l t s  i n  increased descent 
capabi l i ty .  

Ames Research Center 
National Aeronautics and Space Administrat ion 

Moffett Field,  C a l i f . ,  Aug. 17, 1964 

9 



REFERENCES 

1. Anon. Resul ts  of S t a t i c  Tests of a Full  Scale,  Wing Mounted, Tip Turbine 
Driven L i f t  Fan. The General E l e c t r i c  Co . , Fl igh t  Propulsion Lab. 
Dept . , TCREC-TR-62-21, March 1962. 

2.  Aoyagi, Kiyoshi, Hickey, David H. ,  and d e s v i g n y ,  Richard A. :  Aerodynamic 
Charac te r i s t ics  of a Large-Scale Model With a High Disk-Loading L i f t i ng  
Fan Mounted in t h e  Fuselage. NASA TN D-775, 1961. 

3 .  deSavigny, Richard A .  , and Hickey, David H.  : Aerodynamic Charac te r i s t ics  
i n  Ground Effec t  of a Large-Scale Model With a High Disk-Loading Li f t ing  
Fan Mounted i n  t h e  Fuselage. NASA !I" D-1557, 1963. 

4. Goldsmith, Robert H . ,  and Hickey, David H. :  Charac te r i s t ics  of Li f t ing-  
Fan V/STOL A i r c r a f t .  
no. 9, Oct. 1963, pp. 70-77. 

Astronautics and Aerospace Engineering, vol. 1, 

5. Hickey, David H . ,  and Hall, Leo P.:  Aerodynamic Charac te r i s t ics  of a 
Large-Scale Model With Two High Disk-Loading Fans Mounted i n  the  Wing. 
NASA TN D- 1650 , 1963 . 

10 



TABLE I.- DUCT CO0FZ)INATES 

~- 
X, inches 
0.70 
-90 
1.16 
1.40 
2.08 
3 .oo 
4 .OO 
5 .oo 
6 .oo 
7 .oo 
8 .OO 
g .oo 
10.25 
11.07 
12.07 
13 -07 

15 -07 
14.07 

16.07 
1-7 -07 
19 -07 

1 (a) In t e rna l  and external  contours 
~ 

In t e rna l  contour, leading edge through s t a t i o n  68.00 
- 

Y, inches 

27.21 
28.30 

26.72 
26.46 

25.04 

25.86 
25 -38 

24.78 
24.56 
24.41 
24.30 

24.20 
24.21 
24.22 

24.23 

24 .26 
24.32 

24.61 
24.84 

24.41 
24.50 

_ _  

X, inches 
~ 

21.07 
23.07 
25 -07 
-27 -07 
29.07 
31 -07 
32.16 
33 -16 
34.16 
35 .I6 
36.16 
37 -16 
38.16 
39.16 
40.16 
41.16 
42.16 
43.16 
44 .i6 
45.16 
46 .i6 

Y ,  inches 
25.08 
25.36 
25.63 
25 -91 
26 .21 
26.52 
26.69 
26.85 
27 .oi 
27 -17 
27-33 
27.49 
27.66 
27.83 
28 .oo 

28 -33 

28.67 
28.83 
28 e99 

28.17 

28 30 

External contour 
Stat ion 68.00 t o  152.47 

16 
20 
30 
40 
50 
60 
68 

90 t o  180 

radius , 

226.46 
240.82 

280.90 
317.41 
384.22 

257 71. 

-~ I X, inches- 

47.16 
48.16 
49.16 
50.16 
51.16 
52.16 
53 -16 
54.16 
55-16 . 
56.16 
57.16 
58.16 
59.16 
60.16 
61.16 
62.16 
63 -16 
64.16 
65.16 
66.16 
68 .oo 

Y,  inches 

29.16 
29 -31 
29.45 
29.60 
29 -73 
29 -87 
29 -99 
30.12 
30.24 
30.36 
30.47 
30.58 
30.68 
30.78 
30 -87 
30.96 
31-03 
31 .io 
31 -17 
31.21 
31.25 
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TABU3 I.- DUCT COORDINATES - Concluded 

(b) External contours 

. .  ... . ~~ ~ - .  

External contour, leading edge through s t a t i o n  68.00, Y, in .  

X,  inches 

0.70 
90 

1.24 
1.40 
1.78 
2.32 
2.86 
3 .40 
4.08 
5.44 
6.80 
8.16 
10.20 
~3.60 
17 .oo 

23.80 
27.20 
34 .oo 
47.60 

61.20 

20 .40 

40.80 

54.40 

68 .OO 

- . -  - -. 

Circumferential posi t ion from t o p  of duct, deg 

16 
2s. 30 
29 -57 
30 -53 
30 -95 
31.67 
32 -33 
32 -90 
33 -41 
34.02 
35 -05 
35.96 
36.80 
37 -90 
39 -48 
$0.85 
$2.06 
$3.16 
$4.15 
$5.84 
$7.20 
$8.23 
48 -95 
+9 -38 
+9 -51 

- 
20 

28.30 
29.54 
30.47 
30.88 
31.58 
32 e 2 3  
32.78 
33 -28 
33 -88 
34 -87 
35.76 
36 -58 
37 -65 
39 -19 
40 -53 
41.70 
42.78 
43.74 
45.38 
46.70 
47.70 
48.40 
48.83 
48 -95 
~ 

30 
28.30 
29.47 
30 -36 
30 -75 
31.42 
32 -03 
32 -55 
33 -02 
33 -59 
34 -53 
35 -38 
36.16 
37.18 
38.64 
39 -90 
41.02 
42.04 
42 -95 
44.51 
45.76 
46.71 
47 -38 
47 -78 
47 -90 

. ...- ~~ 

~ 

40 
-28.30 
29.41 
30 -25 
30.62 
31 -25 
30.82 
32 *31 
32 -76 
33 -30 
34.19 
34 -99 
35 -73 
36.69 
38 -07 
39 -26 
40 -33 

43 -63 

41.29 
42.15 

44.71 
45 -71 
46.34 
46.72 
46.83 

50 
2t?. 30 
29 -34 
30.12 
30.46 
31. -05 
31. -59 
32 -05 
32.47 
32 -97 
33 -80 
34 -55 
35 -24 
36 -13 
37.42 
38.54 
39 -53 
40.42 
41.23 
42.60 
43 -71. 
44 -55 
45 .I5 
45.50 
45.60 

60 
28.30 
29.24 
29 -95 
30 -27 
30.80 
31 -29 
31 -71. 
32 -29 
32 -55 
33 -30 
33 -99 
34.61 
35 -42 
36.60 
37 -62 
38 -52 
39 -33 
40.06 
41.31 
42.32 
43 -09 
43.62 
43 -95 
44.04 

- .  
68 
28.3~ 
29.12 
29 -74 
30 .oi 
30.48 
30 -90 
31 -27 
31.60 
32 .oo 
32.66 
33 -25 
33 -79 
34.50 
35 -52 
36.41 
37 -20 
37 -90 
38.54 
39 -63 
40.51 

41.64 
41.92 

41.17 

42 .OO 

30 t o  180 
. -  - 

28.30 
29 .oo 
29 -53 
29.76 
30.16 
30 -52 
30.84 
31.12 
31.46 
32.02 
32 -53 
32 -99 
33 -60 
34.47 
35 -22 
35 -89 
36 -50 
37 -05 
37 -97 
38 -73 
39 -29 
39.69 
39 -93 
40 .OO 
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TABm 11.- CEITTERBODY GEOMETRY 

.- 

I I n l e t  
centerbody 

x, 
inches 

31 -07 
31-33 
31- *55 
31.88 
32 -52 
33 -67 
36 -23 
39 -13 
43 -32 
49.12 
55 -57 
60.73 
62.02 
63 -31 
64.37 
68 .oo 

inc he s VI/ 
1-17 1 
1.60 
2 .og 
2.89 
4.01. 
5.90 
7.45 
9 -19 
io .92 
12.16 
12.67 
12.72 
12-75 
12-75 
12 -75 

,eading-edge radius = 2.80 

x, 
inc he s 

73 *75 
108.92 
109 -97 
Ill .22 

114.97 
117.47 

124.97 

134 -97 
137.97 
139 -97 
142.47 
144.97 
147.47 
147 -97 
152.47'~ 
154 -97 
i87.47 
189 -97 
191.22 
192.47 

194 -97 
222.47 
225.17 

112.47 

1-19 -97 

129 e97 

1.93 -72 

-~ ~ 

E x i t  
cent erbody 

Y , inches 

& = 0.6 
3 

12.50 
12.50 
12.60 
12.70 
12.80 
13.30 
14.05 
15 -05 
17 a30 
19.80 
21 .bo 
21.90 
22.25 
22 e35 
22 -35 
22.30 
22.05 
21.65 
21.20 
12 - 35 
11.70 
i1.35 
11 .oo 
10.70 
10 *35 
2.95 
0 

= 0.8 
Ae,S 

12.50 
12 .30 
12.51 
12.60 
12.65 
12.85 
13 -25 
13 -75 
15 -30 
i6.65 
17 *75 
18.05 
18 -35 

18 -35 
18.25 
17 -95 
17.60 
11.80 
11.40 
11.15 
10.90 
io .65 
10 *35 
2.95 
0 

18.40 
18.40 

& = 1.0 , 
12.50 
12.50 
12.50 
12.50 
12.50 
12.51 
12 -55 
12 -55 
12 -55 
12 -55 
12.60 
12.60 
12.65 
12.65 
12.60 
12 -55 
12 .40 
12 *33 
12 .29 
11.23 
11.10 
11 .oo 
10.80 
10.60 
10 -35 
2 *95 
0 

*Duct t r a i l i n g  edge 

Note : 
1. 
2. Increase X dimensions of e x i t  centerbodies by 8 inches for e x i t  area 

Frame containing fan from s t a t ion  68.00 t o  s t a t i o n  73.75. 

r a t i o s  of 0.56, 0.74, and 0.93. 





A-31081 
(a) Front view of model. 

Figure 1.- Model mounted i n  the  t e s t  sect ion of t he  Ames 40- by 80-foot wind 
tunnel .  



A-31082 

(b) Rear view of model showing duct e x i t  w i t h  d i f fuse r  centerbody ins t a l l ed  
giving c ru ise  e x i t  area (&/&,s = 0.62). 

Figure 1. - Concluded. 
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Figure 2 .  - Model dimensions and geometry. 
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f an  t i p  speed r a t io ;  CL = Oo, l&/&,, = 0 .62 .  
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Figure 6 .- Variation of model longi tudinal  aerodynamic cha rac t e r i s t i c s  with 
fan t i p  speed r a t i o ;  a = Oo, €+/&,s = 0.74. 
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Figure 8. - Concluded. 
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Figure 16. - Continued . 
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Figure 16. - Concluded. 
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Figure 17.- Effect of duct i n l e t  s t a l l  on the  r a d i a l  t o t a l  pressure d i s t r ibu -  
t i o n  i n  the  i n l e t ;  &/&,s = 1.0,  CL = 80°, V& = 43 knots.  
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Figure 18.- Model performance showing the  e f f ec t  of duct e x i t  area var ia t ion 
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on net t h rus t  with forward speed; a = 0 , N = 100 percent.  
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Figure 19.- Model performance showing the  e f f e c t  of ex terna l  duct drag va r i a -  
t i o n  on net  thrust with forward speed; CL = Oo, N = 100 percent .  
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Figure 20.- Maximum descent conditions due t o  duct i n l e t  s t a l l  f o r  an airplane 
having two ducted l i f t - c r u i s e  fans;  &/A,,, = 1 .0 .  
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